Last synced on 18 April 2025 at 11:05 pm

Temporary Catheter, Embolic Protection, Transcatheter Intracardiac Procedures

Page Type
Product Code
Definition
Embolic protection for transcatheter intracardiac procedures
Physical State
This device is a single use percutaneous catheter system that has (a) blood filter(s) at the distal end and is introduced into an artery through the skin using a guidewire.
Technical Method
This device is a single use percutaneous catheter system that is introduced into an artery.
Target Area
Aortic arch or aortic arch branch vessels.
Regulation Medical Specialty
Cardiovascular
Review Panel
Cardiovascular
Submission Type
510(K)
Device Classification
Class 2
Regulation Number
870.1251
GMP Exempt?
No
Summary Malfunction Reporting
Ineligible
Implanted Device
No
Life-Sustain/Support Device
No
Third Party Review
Not Third Party Eligible

CFR § 870.1251 Temporary catheter for embolic protection during transcatheter intracardiac procedures

§ 870.1251 Temporary catheter for embolic protection during transcatheter intracardiac procedures.

(a) Identification. This device is a single use percutaneous catheter system that has (a) blood filter(s) at the distal end. This device is indicated for use while performing transcatheter intracardiac procedures. The device is used to filter blood in a manner that may prevent embolic material (thrombus/debris) from the transcatheter intracardiac procedure from traveling towards the cerebral circulation.

(b) Classification. Class II (special controls). The special controls for this device are:

(1) Non-clinical performance testing must demonstrate that the device performs as intended under anticipated conditions of use. The following performance characteristics must be tested:

(i) Simulated-use testing in a clinically relevant bench anatomic model to assess the following:

(A) Delivery, deployment, and retrieval, including quantifying deployment and retrieval forces, and procedural time; and

(B) Device compatibility and lack of interference with the transcatheter intracardiac procedure and device.

(ii) Tensile strengths of joints and components, tip flexibility, torque strength, torque response, and kink resistance.

(iii) Flow characteristics.

(A) The ability of the filter to not impede blood flow.

(B) The amount of time the filter can be deployed in position and/or retrieved from its location without disrupting blood flow.

(iv) Characterization and verification of all dimensions.

(2) Animal testing must demonstrate that the device performs as intended under anticipated conditions of use. The following performance characteristics must be assessed:

(i) Delivery, deployment, and retrieval, including quantifying procedural time.

(ii) Device compatibility and lack of interference with the transcatheter intracardiac procedure and device.

(iii) Flow characteristics.

(A) The ability of the filter to not impede blood flow.

(B) The amount of time the filter can be deployed in position and/or retrieved from its location without disrupting blood flow.

(iv) Gross pathology and histopathology assessing vascular injury and downstream embolization.

(3) All patient contacting components of the device must be demonstrated to be biocompatible.

(4) Performance data must demonstrate the sterility of the device components intended to be provided sterile.

(5) Performance data must support the shelf life of the device by demonstrating continued sterility, package integrity, and device functionality over the identified shelf life.

(6) Labeling for the device must include:

(i) Instructions for use;

(ii) Compatible transcatheter intracardiac procedure devices;

(iii) A detailed summary of the clinical testing conducted; and

(iv) A shelf life and storage conditions.

(7) Clinical performance testing must demonstrate:

(i) The ability to safely deliver, deploy, and remove the device;

(ii) The ability of the device to filter embolic material while not impeding blood flow;

(iii) Secure positioning and stability of the position throughout the transcatheter intracardiac procedure; and

(iv) Evaluation of all adverse events including death, stroke, and vascular injury.

[83 FR 4140, Jan. 30, 2018]

Temporary Catheter, Embolic Protection, Transcatheter Intracardiac Procedures

Page Type
Product Code
Definition
Embolic protection for transcatheter intracardiac procedures
Physical State
This device is a single use percutaneous catheter system that has (a) blood filter(s) at the distal end and is introduced into an artery through the skin using a guidewire.
Technical Method
This device is a single use percutaneous catheter system that is introduced into an artery.
Target Area
Aortic arch or aortic arch branch vessels.
Regulation Medical Specialty
Cardiovascular
Review Panel
Cardiovascular
Submission Type
510(K)
Device Classification
Class 2
Regulation Number
870.1251
GMP Exempt?
No
Summary Malfunction Reporting
Ineligible
Implanted Device
No
Life-Sustain/Support Device
No
Third Party Review
Not Third Party Eligible

CFR § 870.1251 Temporary catheter for embolic protection during transcatheter intracardiac procedures

§ 870.1251 Temporary catheter for embolic protection during transcatheter intracardiac procedures.

(a) Identification. This device is a single use percutaneous catheter system that has (a) blood filter(s) at the distal end. This device is indicated for use while performing transcatheter intracardiac procedures. The device is used to filter blood in a manner that may prevent embolic material (thrombus/debris) from the transcatheter intracardiac procedure from traveling towards the cerebral circulation.

(b) Classification. Class II (special controls). The special controls for this device are:

(1) Non-clinical performance testing must demonstrate that the device performs as intended under anticipated conditions of use. The following performance characteristics must be tested:

(i) Simulated-use testing in a clinically relevant bench anatomic model to assess the following:

(A) Delivery, deployment, and retrieval, including quantifying deployment and retrieval forces, and procedural time; and

(B) Device compatibility and lack of interference with the transcatheter intracardiac procedure and device.

(ii) Tensile strengths of joints and components, tip flexibility, torque strength, torque response, and kink resistance.

(iii) Flow characteristics.

(A) The ability of the filter to not impede blood flow.

(B) The amount of time the filter can be deployed in position and/or retrieved from its location without disrupting blood flow.

(iv) Characterization and verification of all dimensions.

(2) Animal testing must demonstrate that the device performs as intended under anticipated conditions of use. The following performance characteristics must be assessed:

(i) Delivery, deployment, and retrieval, including quantifying procedural time.

(ii) Device compatibility and lack of interference with the transcatheter intracardiac procedure and device.

(iii) Flow characteristics.

(A) The ability of the filter to not impede blood flow.

(B) The amount of time the filter can be deployed in position and/or retrieved from its location without disrupting blood flow.

(iv) Gross pathology and histopathology assessing vascular injury and downstream embolization.

(3) All patient contacting components of the device must be demonstrated to be biocompatible.

(4) Performance data must demonstrate the sterility of the device components intended to be provided sterile.

(5) Performance data must support the shelf life of the device by demonstrating continued sterility, package integrity, and device functionality over the identified shelf life.

(6) Labeling for the device must include:

(i) Instructions for use;

(ii) Compatible transcatheter intracardiac procedure devices;

(iii) A detailed summary of the clinical testing conducted; and

(iv) A shelf life and storage conditions.

(7) Clinical performance testing must demonstrate:

(i) The ability to safely deliver, deploy, and remove the device;

(ii) The ability of the device to filter embolic material while not impeding blood flow;

(iii) Secure positioning and stability of the position throughout the transcatheter intracardiac procedure; and

(iv) Evaluation of all adverse events including death, stroke, and vascular injury.

[83 FR 4140, Jan. 30, 2018]